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Abstract

The Casimir Effect is a small force on conducting
surfaces which arises from quantum electrodynamics.
Quantizing the electromagnetic field yields a small
ground-state energy for each frequency. Summing over
all frequencies implies the field has an infinite vacuum
energy. Between conducting surfaces, this energy may
be dependent on geometry, which gives rise to forces
on the boundaries. This comprehensive exercise ex-
plores the electromagnetic ground state energy and
the consequent force between two conducting plates.
Some extensions and generalizations of the Casimir
force to other geometries and temperatures are dis-
cussed. Finally, it offers a brief overview of experi-
mental attempts to confirm the effect.
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1 Introduction

Weird things happen in nature. Physicists, concerned with modeling and predicting the fundamen-

tal dynamics that underlie the observable universe, frequently find themselves discussing things

which—to our everyday physical intuition—might seem completely impossible, yet the physics

works. Moreover, the physical predictions are backed up by rigorous experiments! Take, for exam-

ple, special relativity’s upending of any notion of a universal coordinate time; or the mind-boggling

Stern-Gerlach experiments which demonstrate that probabilities are fundamentally complex1 states

[1, 2]. So perhaps, it is not so unreasonable to predict an infinite energy which is present even in

empty space, entwined with the quantum fields which propagate light, electricity, and magnetism,

and giving rise to real forces on macroscopic objects. This mysterious energy produces, in the

appropriate configurations, the Casimir effect.

Electricity and magnetism are governed, in classical mechanics, by Maxwell’s equations: rela-

tions which describe the interplay of the magnetic and electric fields. These equations describe the

fields which allow magnets to stick to refrigerators and hair to float towards balloons after rub-

bing. Maxwell’s equations may also give rise, in empty space, to certain oscillating propagations of

electric and magnetic fields called “plane waves” [3]. As it turns out, these waves are related to a

well-known mathematical construct known as a simple harmonic oscillator. This suggests that the

electromagnetic field itself may be modeled, in some form, as a harmonic oscillator as well.

In classical mechanics, simple harmonic oscillators (and hence light waves) may have any energy,

but in the quantum formalism, simple harmonic oscillators have specific energies of the form

E(n) = (1/2 + n)h̄ω (1.1)

where h̄ = 1.0546× 10−34 J · s is a fundamental constant of energy × time, and ω is the frequency of

the oscillator. Unlike the classical harmonic oscillator, the quantum harmonic oscillator can never

possess zero energy. In fact, its least energetic, or “ground” state has energy 1/2h̄ω. As it turns

out, this ground energy implies that even in an electromagnetic system which has no photons, some

energy remains.

In quantum field theory, we represent the electromagnetic field as an operator which is analogous

to the sum of an infinite number of harmonic oscillators (one for each frequency). The ground state

energy is therefore a sum over infinite frequencies—an infinite quantity itself. This field structure
1In the mathematical sense: a + bı.
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gives rise to an infinite energy in empty space.

Under ordinary circumstances this energy is unnoticeable. It exists wherever the electromagnetic

field does. Yet, as only differences in energy give rise to forces, we rarely feel the field energy’s

effects. However, by introducing certain types of boundary conditions on the field, we can change

the allowed frequencies for the system—resulting in a lower energy density in one part of space.

These differentials give rise to a small but experimentally observable force on the boundaries, known

as the Casimir effect.

We’ll start by proving the quantization conditions outlined above in Section 2, move on to

explore the energy between two parallel conducting plates in Section 3, and compare two schemes

for renormalizing the infinities associated with quantum electrodynamics. In Sections 4, 5, and

6, we will discuss various applications, geometries, and extensions of the Casimir effect. Finally,

Section 7 highlights some of the key experimental literature in the field: evidence for the surprising

reality of this counterintuitive phenomenon.

2 Quantizing the Electromagnetic Field

We begin with Maxwell’s equations [3].

∇ ·E =
ρ

ε0
(2.1)

∇×E = −∂B
∂t

(2.2)

∇ ·B = 0 (2.3)

∇×B = µ0J + µ0ε0
∂E
∂t

(2.4)

Equation (2.1) implies the existence of the scalar potential φ, and Lorentz invariance promotes

this potential to a full vector potential A [4]. Using these, we can rewrite (2.3) and (2.4) as:

−∇2φ− 1
c

∂

∂t
∇ ·A = 4πρ (2.5)

∇(∇ ·A)−∇2A =
4π
c

J +
1
c

∂

∂t

(
−∇φ− 1

c

∂A
∂t

)
. (2.6)

When no charges or currents are present, both ρ and J are zero. The Hamiltonian for the
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electromagnetic field is then2

HEM =
1

8π

∫
(E2 + B2) d3r. (2.7)

In the absence of charges or currents, the definition of the vector potential allows us to write

HEM =
1

8π

∫ [(
−1
c

∂A
∂t

)2

+ (∇×A)2
]
d3r. (2.8)

We take as granted the Hermitian operator form of the vector potential [2]:

Â =
∑
k,λ

c

√
wπh̄

ω

(
âk,λε(k, λ)

ei(k · r−ωt)√
V

+ â†k,λε(k, λ)
e−i(k · r−ωt)√

V

)
. (2.9)

Here, k is a wavevector in the direction of propagation whose magnitude determines the frequency

of the wave. λ is a polarization term, ω is the angular frequency, ε is a function which ensures

terms have the correct sign and magnitude, and â† and â are the raising and lowering operators

satisfying [
âk,λ, â

†
k′,λ′

]
= δk,k′δλ,λ′ . (2.10)

These operators act on the state of the electromagnetic field at the frequency and spin corre-

sponding to their k and λ. When â†k,λ acts on a state, it increases the energy of by h̄ω. âk,λ inverts

the process, lowering the energy of the mode by h̄ω. Therefore, we conceptualize â† as a creation

operator which adds a single photon to the field, and â as an annihilation operator which removes

a photon. The creation and annihilation approach makes it easy to analyze the Hamiltonian; by

substituting (2.9) for the vector potential in (2.8), we find

Ĥ =
1
2

∑
k,λ

h̄ω
(
âk,λâ

†
k,λ + â†k,λâk,λ

)
=

∑
k,λ

h̄ω

(
â†k,λâk,λ +

1
2

)
, (2.11)

thanks to the commutation relations for â† and â.

The ground state for this Hamiltonian (written |0〉) is defined by

âk,λ |0〉 = 0. (2.12)

2Here we are assuming the use of the Coulomb gauge ∇·A = 0. Gauge choice does not affect the derived ground
state energy [5].
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in other words, the state from which no more photons can be annihilated. This is an empty

electromagnetic field: every mode has no photons present, and is in its lowest possible energy state.

Because the raising and lowering operators commute whenever k or λ are different, we can

decompose |0〉 into the product of each independent oscillator for a given k and λ:

|0〉 = |0k1,λ1〉 ⊗ |0k2,λ2〉 ⊗ |0k3,λ3〉 ⊗ · · · (2.13)

where the tensor product |spin up〉⊗ |x = 0〉 denotes the state in which the system is both spin up

and at x = 0.

Classically, we expect that an electromagnetic field with no photons would have zero energy.

However, when we take the expectation value of the Hamiltonian (2.8) acting on |0〉, we find

〈0| Ĥ |0〉 = 〈0|
∑
k,λ

h̄ω

(
â†k,λâk,λ +

1
2

)
|0〉 (2.14)

〈E〉 =
1
2

∑
k,λ

h̄ω. (2.15)

Hence the energy of the electromagnetic field in the ground state is the sum of many uncoupled

harmonic oscillators, each with energy 1/2h̄ω. Why is the energy non-zero? One way to rationalize

this result is to recognize that the commutation relation of 〈E〉 and 〈B〉 is [6]

[
Êj(x), B̂k(y)

]
= −ıh̄µ0c

2εjklδ,l(x− y), (2.16)

which implies that the electric and magnetic fields do not (in general) commute. Therefore, over

time, they should exhibit small quantum fluctuations greater than zero. Their fluctuations cannot

vanish unless [E,B] is zero, so we should expect some energy to be present in the system.

What is more surprising is that this zero-point energy is infinite, being a sum over all possible

frequencies. Equation (2.15) states that empty space, thanks to the dynamics of the electromagnetic

field operators, has an infinite, intrinsic energy—even when no photons are present. Under ordinary

conditions this infinity is not physically measurable, as it is present at each point in space. As we will

see, however, imposing boundary conditions on the electromagnetic field can generate differences

in the zero-point energy, which will lead to surprising results.
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3 The Force Between Two Plates

To illustrate the most basic example of the Casimir effect, we consider the same system that Casimir

evinced in his second 1948 paper: the vacuum energy of two parallel conducting plates brought very

close together [7]. Instead of taking a classical electromagnetic approach and including retardation

effects, he derived their interaction energy from a quantum-mechanical perspective. This section

presents a slightly modified version of Casimir’s original derivation, and compare it with a more

modern zeta-functional renormalization program.

3.1 Casimir’s Derivation

Consider a conducting box of volume L3, with an L × L plate contained within, parallel to the x

and y axes of the box. We let the distance between the plate and the wall of the box be a, and

vary a to find the change in vacuum energy.

The conducting walls of the box impose Dirichlet boundary conditions on the possible electro-

magnetic modes of the cavity: the tangential component of the electromagnetic field must vanish

there. Solving the wave equation with these conditions3 reveals that the boundaries quantize the

x, y, and z components of the wavevectors k, such that they take on the discrete values

kx =
π

L
nx, ky =

π

L
ny, kz =

π

a
nz. (3.1)

where

k2 = k2
x + k2

y + k2
z . (3.2)

In a vacuum, angular frequency ω is related to the wave number k by the speed of light c:

ω = ck. (3.3)

This allows us to express the zero-point energy of the field (2.15) as a sum over quantized modes,

identified by kx, ky, and kz:

〈E〉 = h̄c
∑ 1

2

√
k2
x + k2

y + k2
z . (3.4)

Polarization (the λ terms in section 2) allows for two waves corresponding to each wave number—
3A well-known Sturm-Liouville problem.
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except when one ki is 0.4 Therefore, we multiply all k > 0 terms by 2, and expand the summation

in x, y, and z:

〈E〉 = h̄c

∞∑
nx=0

∞∑
ny=0

[
1
2

√(nxπ
L

)2
+
(nyπ
L

)2
+
∞∑

nz=1

√(nxπ
L

)2
+
(nyπ
L

)2
+
(nzπ
a

)2
]

(3.5)

Since x and y are presumed to be very large compared to a, we treat them as continuous

variables and convert their sums to integrals, writing

〈E〉 = h̄c

∫ ∞
0

∫ ∞
0

1
2

√(nxπ
L

)2
+
(nyπ
L

)2
+
∞∑

nz=1

√(nxπ
L

)2
+
(nyπ
L

)2
+
(nzπ
a

)2
dnx dny (3.6)

We now consider the three dimensional parameter space nx, ny, nz. Observing that the x and y

terms are added in quadrature, we make a change to polar coordinates x2 = k2
x + k2

y. The resulting

substitution from nx,y → kx,y yields an additional factor of L2/π2, and integrating over the radial

angle for the first quadrant (all quantities are positive) gives π/2. We let n = nz for brevity, and

obtain

〈E〉 = h̄c
L2

π2

π

2

∫ ∞
0

∞∑
n=(0)1

√(nπ
a

)2
+ x2 x dx (3.7)

In the above sum, (0)1 indicates that the term with n = 0 is to be multiplied by 1/2.

〈E〉 is clearly infinite. The series diverges exponentially, and the integral diverges quicker still.

This result makes some degree of physical sense. Quantizing the electromagnetic field at each point

in continuous space must yield an infinite energy. However, for purposes of mechanics, we are free

to set the zero of a potential energy wherever we like—even at infinity. To that end, we consider

the difference between the vacuum point energy at two configurations: one where a is on the order

of L/2, and another in which it is much smaller.

δE = h̄c
L2

π2

π

2

 ∑
n=(0)1

∫ ∞
0

√
k2
z + x2 x dx−

∫ ∞
0

∫ ∞
0

√
k2
z + x2 x dx

(a
π
dkz

) (3.8)

The first term corresponds to small (discrete) a. The second term treats a as large enough to

be continuous, and converts the sum to an integral accordingly. In effect we are subtracting the

quantized energy within the cavity from the intrinsic energy in free space, as shown in Figure 3.1.
4This apparent special case arises from the “folding over” of the sum over both positive and negative k (from −∞

to ∞) into a sum from 0 to ∞—which simplifies evaluation later.
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Figure 1: Outside the cavity formed by the plates, all vacuum
frequencies are allowed. Within the cavity, however, the vacuum
modes take on discrete frequencies. Changing the width of the
cavity changes the density of modes relative to free space, which
yields an energy difference.

To simplify the integrand, we introduce a dummy variable

u ≡
(ax
π

)2
(3.9)

and perform a change of variables:

δE = h̄c
L2

π2

π

2

 ∞∑
n=(0)1

∫ ∞
0

π

a

√
n2 + u

π2

2a2
du−

∫ ∞
0

∫ ∞
0

π

a

√
n2 + u

π2

2a2
du dn


= L2h̄c

π2

4a3

 ∞∑
n=(0)1

∫ ∞
0

√
n2 + u du−

∫ ∞
0

∫ ∞
0

√
n2 + u du dn

 . (3.10)

Unfortunately, even this energy difference is divergent! Luckily, we can avoid this difficulty by

considering the fact that each conductor has a plasma frequency

ω2
p =

Nq2

meε0
, (3.11)

which is the minimum oscillation frequency the electrons in the conductor can support [8]. Below the
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plasma frequency, the conductor acts as a reactive medium5 and reflects electromagnetic waves—

giving rise to the boundary conditions discussed above. Above the plasma frequency, however, the

electrons are capable of oscillating in resonance with the waves. This means that the conductor

is effectively transparent to photons above a certain frequency, and the boundary conditions no

longer hold. Because of this, we multiply the contributions to the total energy of each mode k by

a regulator function f(k/km) which is unity for k � km, approaches 0 at infinity, and is 1/2 at

k = km. The exact value of km and the shape of f may be phenomenologically obtained, but will

not be especially important in the final approximation. We obtain

δE = L2h̄c
π2

4a3

 ∞∑
n=(0)1

∫ ∞
0

√
n2 + u f(π

√
n2 + u/akm) du

−
∫ ∞

0

∫ ∞
0

√
n2 + u f(π

√
n2 + u/akm) du dn

]
. (3.12)

In quantum mechanics, many important problems involve divergent sums or integrals, yet we

have good reason to believe the observables they describe are finite. For example, if the energy

difference between two plates were truly infinite, we would expect extreme results. Two mirrors

placed close together would snap closed and never come apart! Therefore, we use two techniques

to work around the infinities and make useful predictions: regularization, and renormalization.

Introducing f(k/km) comprises our regularization step. We transformed the infinite expression

into a finite one by introducing a special function. Here, we made a reasonable physical argument

for the introduction of a cutoff function, but in other cases, no physical argument is available. One

may then choose to say that the regularization is a consequence of some unspecified physics [5].

Alternatively, one could argue that the mathematical expression of the quantity being measured

does not truly correspond to the dynamics; the renormalization is a way to bring the mathematics

back into correspondence with reality.

In either case, the key to an effective renormalization program is to show that the answer is

independent of the regularization parameters [5]. For example, we could take the limit of the cutoff

frequency to infinity, after obtaining a finite sum. In some configurations of the Casimir effect, the

Riemann Zeta function is used, through analytic continuation, to bring the infinities under control.

In Casimir’s plate derivation, however, renormalization is somewhat simpler.
5Reactive, in this case, means a medium which only propagates exponentially decaying waves.
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Returning to δE, we introduce w ≡ u+ n2, obtaining6

δE = L2h̄c
π2

4a3

 ∞∑
n=(0)1

∫ ∞
n2

√
w f(π

√
w/akm) dw −

∫ ∞
0

∫ ∞
n2

√
w f(π

√
w/akm) dw dn

 (3.13)

This type of expression—the difference between a sum and an integral—was considered by both

Euler and Maclaurin around 1735 [9]. Both found, independently, that for a smooth function F (x):

∫ N

0
f(x) dx−

(N)∑
n=(0)1

f(n) =
p∑

k=2

Bk
k!

(
f (k−1)(N)− f (k−1)(0)

)
+R (3.14)

where R is a decreasing error term. Bk are the Bernoulli numbers (-1/2, 1/6, 0, -1/30, 0, 1/42, . . . ).

Identifying F (n) with the inner integral in both terms and applying the fundamental theorem of

calculus, we recover F ′(n) and the subsequent derivatives which will appear in the Euler-Maclaurin

series.

F (n) =
∫ ∞
n2

√
w f(π

√
w/akm) dw (3.15)

F ′(n) = −2n2f(nπ/akm) (3.16)

F ′′(n) = −4nf(nπ/akm)− 2n2f ′(nπ/akm)
(

π

akm

)
(3.17)

F ′′′(n) = −4f(nπ/akm)− 8nf ′(nπ/akm)
(

π

akm

)
− 2n2f ′′(nπ/akm)

(
π

akm

)2

(3.18)

Considering the characteristics of f(k/km) at 0 and ∞ allows us to fill in the first few terms of

(3.14).

δE = L2h̄c
π2

4a3

[
1
12

(0− 0)− 1
720

(0− (−4)) + . . .

]
(3.19)

Notice that the Euler-Maclaurin summation formula only evaluates F (n) at zero and infinity.

This is the final step in our renormalization of the δE divergence. The cutoff frequency can vary

from zero to infinity, and—so long as the distance between the plates does not bring the energy

scale close to km—we may say that the final energy is finite for all systems, regardless of the cutoff

behavior. When the energy scale of the system does approach the cutoff frequency, the nature of

the cutoff function becomes more important and the model may require corrections [5].

Inspection of the derivatives of F reveals that all subsequent terms will involve powers of π
akm

.

6In Casimir’s 1948 paper, the argument to f is taken as w, not
√

w. I have corrected this typo and its conse-
quences in this derivation. The change does not appreciably affect the results, except for higher-order terms in the
approximation which we take to be zero.

10



When this ratio is small—that is, when the cutoff frequency of the conductor is sufficiently large

compared to the distance between the plates—the remaining terms in the series are negligible and

we may approximate

δE ≈ −L2h̄c
π2

720
1
a3
. (3.20)

If we vary a slowly and adiabatically, we find that the pressure7 is related to the energy by [10]

P = −∂E
∂V

= −h̄c π
2

240
1
a4
, (3.21)

which is the expression often referred to as “the Casimir force”. What does this force mean? In his

original derivation, Casimir observed that since the sign is negative with respect to a, the energy

of the electromagnetic vacuum gives rise to an attractive force between the plates, which scales as

a−4. Moreover, the attraction does not depend on the conductor’s materials, so long as the distance

between the plates a is significantly larger than the penetration depth of the waves in the cavity, as

determined by km. At very close distances, the approximation breaks down as the electromagnetic

waves start to leak through the cavity walls.

Moreover, the expression includes a factor of h̄. As h̄ goes to zero8, the Casimir effect fades. The

attraction between plates is a fundamentally quantum result, which arises from the quantization

conditions imposed by the harmonic solutions to the electromagnetic field Hamiltonian.

3.2 A Modern Derivation

We reformulate slightly the vacuum energy between the two plates, considering an integral over

the parallel waves kx and ky and a sum over the perpendicular waves kz = nπ/a:

〈E(a)〉 =
h̄

2

∫ ∞
−∞

∫ ∞
−∞

1
(2π)2

∞∑
n=−∞

ωL2 dkx dky. (3.22)

Here, the sum over 2 possible polarization states for all k 6= 0 has been accounted for by extending

the sum to −∞. We will not be using the Euler-Maclaurin formula, so this form is clearer.

While the renormalization program followed by Casimir in his parallel-plates derivation [7] was
7Of our virtual photon gas.
8A common way of evaluating the classical behavior of an expression is to consider the limit as h̄→ 0, as in most

classical situations h̄ is negligible compared to the energy/time scale of the system.
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rooted in sound physical intuition, many modern derivations of the Casimir effect make use of a

more advanced mathematical transformation known as zeta function regularization [11]. Instead

of introducing a cutoff frequency, we force the sum to be convergent by dividing by (potentially

complex) powers s of ω. After taking the integral, we will renormalize by taking the limit as s→ 0,

effectively taking the corrective term to unity. The regularized expression is

〈E(a, s)〉 =
h̄

2

∫ ∞
−∞

∫ ∞
−∞

1
(2π)2

∞∑
n=−∞

ω ·ω−2sL2 dkx dky. (3.23)

We make the same switch to polar coordinates (x, φ) in the (x, y) plane, and substitute y ≡

(ax/nπ):

〈E(a, s)〉 =
h̄c

2π

∫ ∞
0

y(y2 + 1)1/2−s
∞∑
n=1

(nπ
a

)3−2s
L2 dy. (3.24)

This expression becomes divergent as s→ 0, but it does converge for s = 3/2 and larger. Our plan

is to evaluate each expression in its domain of convergence, and then to analytically continue to

s = 0. We treat the integral first, as it is easier:

∫ ∞
0

y(y2 + 1)1/2−s dy. (3.25)

Substitute u ≡ y2, and find
1
2

∫ ∞
0

(u+ 1)1/2−s du. (3.26)

Introducing w ≡ u2, the integration is trivial.9 We assume that s is greater than 3/2, ensuring

convergence. The result is then

1
2

(
1

3/2− s

)
w

3/2−s
∣∣∣∣∞
1

= −1
2

(
1

3/2− s

)
, (3.27)

which may be analytically continued to −1/3 at s = 0 [12]. Returning to (3.24), factoring out some

constants, and taking their limits as s→ 0, we obtain:

〈E(a, s)〉 = −L2h̄c
π2

2× 3
1
a3

∞∑
n=1

1
n2s−3

. (3.28)

Evaluating the sum is more difficult. However, we may make the substitution t ≡ 2s − 3, to
9Provided one is not concerned with domains of convergence.
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give

〈E(a, t)〉 = −L2h̄c
π2

2× 3
1
a3

∞∑
n=1

1
nt
. (3.29)

This last sum is not convergent, but it does have a unique analytic extension. In fact, this

particular sum is an extremely well-studied mathematical entity known as the Riemann zeta func-

tion, denoted ζ(t) [13]. We are interested in ζ(−3), which corresponds to s → 0. Unfortunately,

this definition of the zeta function is divergent in the complex plane for negative real s, but by

evaluating the sum of negative and positive terms, it is possible to extend ζ(t) from Re(s) > 0 to

the whole complex plane. This analytic continuation has been well-studied and its values at certain

critical points are well known. In this case, a very simple result is available:

ζ(−3) = 1/120. (3.30)

The final energy is therefore

〈E〉 = −L2h̄c
π2

720
1
a3
, (3.31)

which matches Casimir’s derivation (3.20). Note, however, that we have not subtracted the plate

energies in the near and far configurations, as we did in section 3.1. This suggests an important

physical intuition for zeta renormalization: using the analytic continuation from s = 3 to s = 0

in some sense corresponds to subtracting the electromagnetic field’s inherent contribution to the

ground state energy 〈E〉 [12, 11]. In Casimir’s derivation we removed the infinite contribution of

the field by taking the difference of two configurations, in effect subtracting whatever (infinite)

energy the field possesses in free space. Here the subtraction may not be as intuitive, but its

analytic simplicity makes it a powerful tool for analyzing vacuum energy problems. In fact, the

zeta function has a close relationship to the commutators of differential operators, suggesting that

the values of s we choose for renormalization correspond to spatial properties of the field under

consideration [14].

Zeta function analysis is not optimal for computational methods, as the p-series is very slow to

converge [11]. However, it allows us to take advantage of superior analytic techniques which do not

require the dependence on an awkward regulator function, and has been successfully applied to a

wide domain of problems in quantum electrodynamics [15].
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3.3 Other Regularization Techniques

There are some configurations for which the zeta-functional analysis shown above fails. There may

still be infinities present in the sum which may not be removed by introducing a factor ω−s. In

still others, the renormalization procedure may be unclear. Luckily, there are other techniques for

dealing with the infinities in vacuum-energy problems such as the Casimir effect.

One of the most useful and generalizable of these techniques makes use of the photonic Green’s

function, which describes the susceptibility of the electromagnetic field in a statistical way [16].

Green’s functions may then be regularized through dimensional or cutoff techniques [5].

Another technique involves identifying the zeta function as an integral over a function known

as the heat kernel, which is a fundamental solution to the heat equation given a certain initial

point source of heat. Linear combinations of heat kernels are used to construct general solutions,

and by some clever mathematical relations, the eigenvalues of the heat kernel can be related to the

coefficients of summation over w in the Casimir energy [11].

4 Atomic Geometry

This section investigates the line of inquiry which led to the two-plates derivation discussed previ-

ously, starting with Verwey and Overbeek’s experimental disparity in colloidal forces and discussing

Casimir and Polder’s retardation model for statically polarizable atoms.10

4.1 Historical Context

In the 1940s, Verwey and Overbeek were conducting research into colloidal solutions [17]. They

developed a theory of the cohesion of colloids (liquid solutions containing a suspension of particles)

in which the constituent particles were held together by London-van der Waals forces. However,

their predictions for colloids composed of larger particles were experimentally disconfirmed: the

attractive force fell faster than the R−7 predicted by their model. Overbeek suggested that their

model’s predictions could become inaccurate as the distance between particles increased. For dis-

tances larger than atomic transition wavelengths, the finite speed of light will significantly perturb

the electromagnetic interaction energy between particles, giving rise to a reduced attractive force

[17]. The consequences of finite light propagation, known as “retardation effects”, could be modeled
10Static polarizability is the ability for two charge distributions—for example, atoms—to induce distortions in each

other’s shape, leading to an electrostatic interaction.
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by the newly developed theory of quantum electrodynamics.

In 1948 Casimir and Polder extrapolated this line of thinking [18, 7]—an argument which

eventually led to the parallel plates derivation. Their first paper ignored the colloidal context,

however, and considered the straightforward interaction of two cases: an atom near a conducting

plate, and two nearby atoms.

4.2 Atom-Plate Interactions

A neutral atom with static polarizability is placed very close to the center of one wall of a large

conducting cubic cavity. Casimir begins by finding the normal modes for the electromagnetic field

within the cavity, and calculates the operator Ĝ describing the atom-field interaction. Second-

order perturbation theory is used to approximate the effects. As in the parallel-plates case, even

the difference in energies between the near and far atom are divergent and require renormalization.

Neglecting the electromagnetic field variation within the atom gives rise to an infinite divergence

in interaction energy. Instead of modeling the atomic structure rigorously, Casimir and Polder mul-

tiply the energy by a regulator e−γk. There is also a simple pole in the expression for electrostatic

energy, which is removed by integrating very close to the pole, and avoiding it by a semicircular

detour of radius z. In both cases, the functions are renormalized by taking the limit as γ and z

approach zero.

The final energies were found to be

δE = − 2
π

∑
n

∫ ∞
0

knu
2du

u2 + k2
n

e−2uR

2R
× |q0;n|2

(
1 +

2
2uR

+
2

4u2R2

)
, (4.1)

where each n corresponds to the contribution from one degenerate energy level. The important

thing to glean from these expressions is that the force between an atom and a conducting plane

goes like R−3 for short distances, but shifts to R−4 as the distance increases. Indeed, the energy

for small R is exactly the classically predicted London energy, whereas the distant interaction is

modified as retardation effects become significant. Recovering the London energy in the small-scale

limit suggests that the Casimir effect supersedes, rather than augments, our existing understanding

of electromagnetic interactions involving neutral particles. This view is also suggested by Casimir

and Polder’s second case: the interaction of two atoms.
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4.3 Atom-Atom Interaction

Casimir and Polder also treated the interaction between two neutral atoms, again by using pertur-

bation theory. They took the unperturbed states to be the atomic states (independent from the

field and each other) and the radiation field in empty space. The perturbation operator is then

computed by adding contributions from the electrostatic interaction of the two atoms together, and

their respective interactions with the electromagnetic field. The fourth-order perturbation is used

to calculate the energy of interaction.

Once again, singularities in the perturbation integrals are encountered, and avoided by inte-

grating around them in increasingly small radii. Another method that Casimir and Polder take

advantage of is to shift the coordinate plane, subtracting some small value from a coordinate to

“push” singularities out of the path of integration.

The subsequent nontrivial calculation reveals again that in the limit of small R, the field inter-

action gives rise to the same forces as the London model, which goes as R−6. However, for large

R, retarding effects begin to take hold, and the force begins to decrease as R−7.

What is remarkable about these two derivations is that in accounting for the finite speed of light,

Casimir and Polder made use of the full quantum-electrodynamic machinery in tackling a previously

unconsidered problem—and discovered an unexpected result which could also be interpreted as an

effect of the quantum vacuum.

5 Geometry Dependence

We have so far encountered three cases of the Casimir effect: two plates, a plate and an atom,

and two atoms interacting with each other. In each case we have surrounded the system with a

conducting cubical box to simplify the quantization conditions, but the enclosure dimensions turn

out not to matter in the final approximation. Hence, we may take the limit as the box goes to the

size of the universe and consider the interaction a purely local one. Moreover, we have abstracted

much of the detail of the atoms away from the expressions for their energy of interaction, describing

each one only by position and static polarizability. Yet the spatial dependence of the Casimir energy

differs significantly between the three cases! This suggests that the Casimir force is dependent on

the geometry of the system, and this is indeed the case, as has been confirmed by the plethora of

theoretical papers covering various configurations of conductors in the years since the resurgence

of interest in the Casimir effect in the 1970s [11].
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5.1 A Spherical Shell

One of the simplest possible configurations is that of a conducting spherical shell. Given the

attraction between the parallel plates and atoms discussed in the previous sections, one might

expect that the Casimir force would pull a spherical shell inwards, as vacuum fluctuations outside

the cavity overwhelmed those within.

Casimir suggested in 1956 that this might provide a solution to a longstanding problem in

physics: the electron radius. In order to avoid an infinite charge density (and self-energy) for a

point electron, some physicists suggested that the electron’s charge be spread out in a spherical

configuration. However, such a charge distribution would exert an outward electrostatic force

which would cause the electron shell to expand. Poincaré suggested the introduction of ad-hoc

forces to ensure the electron’s stability. Casimir proposed that these forces (by analogy with his

parallel plates derivation) could be accounted for by the zero-point energy of the configuration.

Unfortunately, this turned out not to be the case.

Casimir’s model proved an inspiration for Boyer, who published a rigorous derivation of the

Casimir energy for spherical shells in 1968 [19]. He used the commonly known transverse and

longitudinal electromagnetic modes in a spherical cavity, the same inverse-exponential cutoff fre-

quency renormalization program used by Casimir, and the Euler-Maclaurin formula to find the

zero-point energy of a double spherical cavity. In his configuration, an inner sphere with radius a

was surrounded by an outer conducting “spherical universe” with radius R→∞.

Unfortunately, the full expression for the energy passes through Bessel functions on its way to

a complex sum of integrals involving inverse trigonometric functions, and, being four lines long,

does not lend itself well to analytic interpretation. This, sadly, is a common thread in evaluations

of quantum electrodynamic effects. However, Boyer was able to produce conclusive results through

numerical analysis. He found (somewhat surprisingly) that the approximation for the vacuum

energy of the shell converged rapidly to

〈E〉 ≈ +0.09
h̄c

2a
. (5.1)

This constant was refined by Davies, Balian and Duplantier, and Leseduarte and Romeo; the

currently accepted value is approximately 0.092353 [20].

Indeed, the Casimir energy is finite for this configuration, but surprisingly, its sign is positive!

A spherical conducting shell, unlike any of the geometries previously discussed, tends to expand
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due to the zero-point energy. One possible way to interpret the effect is to return to Verwey and

Overbeek’s retardation models [17], and to view the repulsive force on the shell as an effect of

retarded dispersion forces—the interaction of instantaneous dipoles formed in the shell to negate

the electric fields at the boundary. Alternatively, one could interpret the positive vacuum energy

as an effect of the higher density of modes allowed by the spherical Bessel functions which describe

standing waves within the cavity. Either way, the repulsive nature of the force suggests that the

vacuum energy interaction cannot be viewed simply as a pressure due to constrained wavelength

sizes, but is also strongly dependent on the geometry of the surface.

5.2 Corners

In our treatment of infinite plates, atoms, and spheres, we have ignored the interactions at sharp

corners. In fact, the absence of corners has been an underlying assumption in our renormalization

of the high frequency (ultraviolet) divergence in the zero-point energy [21]. To be exact, removing

the ultraviolet divergence relies on the finite curvature of the boundary conditions: for smooth

systems, contributions from both sides of the conductor cancel out.11 Thanks to the divergence

of the electromagnetic field near sharp boundaries, infinite curvature yields a divergence in the

Casimir energy. The resulting force includes a positive infinite term which tends to flatten any

corners in the boundary.

While the intrinsic Casimir energy of a body may be divergent, if we neglect this energy (say,

by assuming a rigid body), the Casimir force between two bodies may yet be finite. For example,

two wedges which face each other experience an attraction proportional to their dihedral angles θ

[21]:

〈E〉 = − h̄ctg
2θ

4π2a
(5.2)

However, the divergent energy near sharp corners does manifest itself physically, especially for

systems of thin foils. A sheet conductor which is cut along a line, for example, experiences a strong

attractive force due to the Casimir interaction which pulls the two halves back together. Even

stranger, a thin metallic foil which undergoes small deformations (say, due to thermal photons)

will tend to wrinkle up: ripples with wavelengths larger than 2.9 h̄c/T are amplified, and smaller

ripples are flattened out. Whence [10], for nonzero temperatures, plane foils are unstable systems

[21].
11We avoided this difficulty for the plate system by placing the boundaries far away.
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6 Temperature Dependence

Our original derivation of the Casimir effect assumed the system to be at absolute zero. How-

ever, this is not the case, and we must consider thermal corrections to the vacuum energy when

performing experiments on real-world systems.

6.1 Basic Thermodynamics

In addition to the vacuum energy, the walls and the field can have some non-zero temperature T. If

the system is in thermal equilibrium, the field will exhibit random thermal fluctuations around its

expectation value, which contribute to the energy and entropy of the system [10]. Hence we must

also include the thermodynamical effect of radiation pressure within the cavity.

Consider the parallel-plates problem. If we treat the cavity walls as black-bodies, and take the

free energy of the photon gas inside the cavity, the thermal part of the electromagnetic free energy

of the system is [21]

ψ(u) =
∫ ∞
u

x ln(1− e−x) dx, x = βh̄ω (6.1)

FT (a) = 2
L2

2πβ
1

(βh̄c)2

∞∑
n=0

ψ(nβπh̄c/a) (6.2)

Taking the partial derivative of the free energy with respect to a, we obtain the force exerted

on the plate due to thermal photons: the black-body radiation pressure

X ′T = −∂FT
∂a

= −2
L2

2πβa
1

(βh̄c)2

∞∑
n=0

n2(βπh̄c/a)2 ψ(nβπh̄c/a). (6.3)

As L→∞, this becomes the limit of the radiation pressure for infinite separation

X∞T = −L
2

β

1
βh̄c

π2

45
. (6.4)

Outside the cavity, this is the radiation pressure that applies to the plates. Hence, we need to

subtract this force from the force from the inside of the cavity to obtain the total thermal force

XT = X ′T −X∞T (6.5)
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For short distances, the n = 0 term vanishes and the results are dominated by a straightforward

exponential decay ψ(x) = e−x. Taking the first few terms of the sum in (6.4), we can show that

the force at low temperature (or short distances) is

F = −L2 π
2

240
h̄c

L4
− π2

45
1
β

1
(βh̄c)3

+
1
β

π

a3
e−α + · · · (6.6)

where α = βπh̄c/a � 1 [21]. The force due to thermal effects scales as T 4 in the first, attractive,

term. For two plates roughly 1 µm apart, α ≈ 24, and the repulsive thermal forces from within the

cavity are extremely small. Therefore, most of the thermal effects come from the external radiation

pressure. If we neglect the internal thermal modes, the relative magnitude of the thermal force as

compared to the zero-point force is

γ ≈ 1
3

(
2π
α

)4

, (6.7)

which suggests that even at room temperature the attraction between plates is largely (γ on the or-

der of 10−4) due to quantum-mechanical effects. However, high precision experimental confirmation

requires greater accuracy than these back-of-the-envelope calculations.

6.2 Numerical Modeling

Genet, Lambrecht, and Reynaud [22] suggested that thermal field fluctuations for metals most

commonly used in experimental measurements would become appreciable at room temperature

for distances of a few µm. They suggested that for purposes of experimental confirmation, both

thermal effects and finite conductivity would need to be accounted for. In their paper, they derived

corrective factors

ηPF =
FP

FCas
, ηTF =

F T

FCas
, (6.8)

where FCas is the regular Casimir force between two plates, and FP and F T are the real Casimir

forces including conductivity and thermal effects, respectively.

To model conductivity, they modeled each plate as an identical mirror with a large optical

thickness, such that the boundary conditions corresponded to a simple vacuum-metal transition,

with reflecting behavior determined by the oscillations of electrons in the metals, with plasma

frequencies drawn from the best known values for the metals commonly used in experimental

measurements. While the plasma model is inaccurate for very small distances, the authors noted

20



Figure 2: Correction to the Casimir force for aluminum (top)
and copper/gold (bottom), as a function of distance [22]. This
simulation modeled a two-mirror system at 300 Kelvin.

that the discrepancy could be corrected by making use of the real dielectric functions12 for the

metals. They also ignored any surface roughness effects, which they suggested could play a critical

role.

Genet et al found through numerical methods that the corrective factors due to conductive and

thermal interactions were largely separable from each other, with a combined corrective factor of

approximately 1% [22]. However, accurate experiments require greater precision, and when the

distance between plates is greater than the plasma wavelength but smaller than the thermal wave-

length, the combined effects must be considered. Their work produced, for common experimental

metals and configurations, plots of the force correction factors which could be used to accurately
12Dielectric functions give the response of the material in terms of spatial and temporal frequencies.
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predict values for intermediate distances—allowing precise experimental verification.

7 Experimental Verification

Casimir remarked [7], at the conclusion of his parallel-plates derivation, that “although the effect is

small, an experimental confirmation seems not unfeasible and might be of a certain interest.” Since

the Casimir effect is a quantum effect which may be measured for macroscopic objects, observing it

would provide another confirmation of quantum electrodynamics. The first attempts to verify the

effect began in the 1950s, but were unfortunately inconclusive. In this section, we will highlight a

few of the experimental tests of the Casimir effect, including current topics of research.

7.1 Early Efforts

The first direct attempt at measuring the Casimir force came in 1958, when Sparnaay made mea-

surements of the attractive force between two glass plates [23]. However, his experimental margin

of error was essentially 100%. Although he made several suggestions for improved experimental

technique, including the importance of clean surfaces and minimizing electrostatic attraction, ex-

perimental verification of the Casimir force proper was abandoned until 1997—despite significant

theoretical developments during that time [24].

While the Casimir effect may not have been confirmed, the effects of vacuum energy were

demonstrated by Sabisky and Anderson in 1972 [25]. Casimir and Polder’s models for retarded

dielectric interactions were extended to continuous bodies by Lifshitz, who derived an expression

for the retarded interaction in terms of the dielectric functions of each media. His model simplifies,

in limiting cases, to the London and Casimir-Polder interactions, which makes it an excellent way to

probe the zero-point energy using extended, non-ideal boundaries. Sabisky and Anderson applied

the Lifshitz equations to a oscillations of a thin film of liquid helium, demonstrating good agreement

with the Lifshitz model, and by extension suggesting that the Casimir force (another consequence

of nonzero vacuum energy) could be experimentally observed.

The experiment worked by depositing a very thin film of helium across the surface of an alkaline-

earth fluoride crystal, which has been cleaved to yield an very flat surface—with only atom-scale

variations. The film clings to the substrate through the Lifshitz interaction, and its thickness

is measured by inducing acoustic standing-wave patterns between the substrate and the helium

liquid-gas interface; thickness is obtained by counting wavelengths across the film. Their data (see
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Figure 3: Sabisky and Anderson’s corrected results for the van
der Waals potential vs. film thickness [25]. Points represent ex-
perimental data, and the line represents the Lifshitz theory.

Figure 7.1), corrected for dispersion and phase-shifting effects, revealed excellent agreement with

Lifshitz’ model, hence confirming—albeit in an indirect way—the reality of vacuum forces.

7.2 Modern Experiments

In 1997, Lamoreaux demonstrated the Casimir effect using what has become the de facto standard

for high-accuracy Casimir experiments: the plate-sphere configuration [24]. While the interaction

between two plates is relatively straightforward to calculate, the parameter space is significantly

more complex. One must control not only the distance between the plates (in nanometers), but

also their relative angles in two dimensions (down to 10−5 radians). Maintaining this degree of
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Figure 4: Lamoreaux’s results for the Casimir force, plotted as
a function of sphere-plate separation [24]. Data (points) show
excellent agreement with the PFT model (line).

parallelism is extraordinarily difficult, and so many experiments use a plane and a sphere instead.

This is possible thanks to the Proximity Force Theorem, or PFT, which models the sphere in terms

of small plane segments with corrected areas [11]. The PFT force between a sphere and a flat

surface is

F (a) = 2πR
(

1
3
π2

240
h̄c

a3

)
, (7.1)

where R is the radius of the sphere.

The surfaces used in the experiment were actually small lenses, 2.54 centimeters in diameter,

coated by evaporation with a 0.5 µm layer of copper and 0.5 µm layer of gold. The spherical

electrode was attached to a micropositioning assembly to allow for fine-grained control of the

sphere-plate distance. The plate, by contrast, was mounted on a small torsion rod which allowed

for small angular rotation, moving the plate closer or farther from the sphere.

Measuring the distance between the plates is more complex. A stack of piezo transducers allowed

the experimenters to change the distance between the plates. At each step, the voltage applied to

the PZTs is adjusted to hold the pendulum at constant displacement: that voltage is proportional

to the force between the plates. The distance was calibrated by measuring the change in capacitance

between the plates for various separations. In addition, corrections were required for the significant

(430 mV) voltage between the plates when shorted; applying a countering static voltage to the two

plates throughout the experiment counteracted the effect. Because of this voltage, an electrostatic

interaction known as the contact potential was also present in the data, varying as 1/a.

Despite these complications, this experiment provided excellent confirmation for the Casimir

force, to within five percent, for distances down to 0.6 µm. (See Figure 7.2.) This was not small
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enough to resolve the corrections to the Casimir theory for thermal effects, but subsequent exper-

iments have continued to lower the margin of error—down to less than 1% at the 95% confidence

interval [26], making the plane-sphere configurations one of the most productive avenues of Casimir

research in the last decade [27].

7.3 Optical Transparency

Since the experimental field has narrowed so much towards Lifshitz models of plane-sphere config-

urations in recent years, some researchers are pursuing another avenue of investigation: modifying

the dielectric functions of the plates themselves, and measuring the change in the Casimir force at

fixed distances. An excellent family of materials for this task are the Hydrogen Switchable Mirrors

(HSMs)—metals such as Mg2Ni, which switch from being reflective in air to transparent in hydro-

gen. Switching the HSM changes the frequencies which contribute to the Casimir energy, which

manifests as a small difference in force.

Unfortunately, early experiments with HSMs have not yielded conclusive results. Iannuzzi,

Lisanti, and Capazzo, in 2004, performed systematic measurements with a gold plate in proximity

to an HSM-coated sphere, for distances of 70–400 nm [28]. Force measurements were made with a

piezoelectric transducer directly below the gold plate, which was supported by a torsion rod. They

ran oscillating electric current through the base of the plate to induce stable oscillations in the gold

plate, and measured the variance of the oscillation amplitude to find the influence of the Casimir

force. However, despite successfully inducing the HSM transition from reflective to transparent,

both conditions yielded the same Casimir forces!

A followup paper from 2006, by de Man and Iannuzzi, examined the theoretical requirements

for observing the desired shift in the Casimir energy [27]. Because the dielectric behavior of HSMs

is only known for wavelengths of 0.2–2.5 µm, it is possible that the mirror surface is not transparent

for higher (ultraviolet) ranges of the spectrum. If this were the case, it could be that the energy

shift during hydrogenation could be much smaller than predicted.

Using the Lifshitz equation, de Man and Iannuzzi constructed several models for the dielectric

behavior of an HSM at higher frequencies, based on the Drude-Lorentz model for metals [27].

Indeed, they found that the expected decrease in the Casimir force was significantly dependent on

the imaginary-frequency behavior of the HSM’s dielectric function—a factor which has not been

experimentally tested. For reasonable estimates of the high-frequency dielectric behavior, de Man

and Iannuzzi suggested that the difference in energy was well within the margin of error in their
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earlier experiments, but could be detected with a more modern experimental apparatus. Further

investigation into the behavior of the Casimir force using hydrogen switched mirrors is ongoing,

and will likely prove a fruitful avenue of investigation not only for the Casimir force, but also for

material science.

7.4 Repulsive Forces

The Lifshitz model predicts that some configurations may produce repulsive Casimir forces. This

was recently confirmed by Capasso and Munday, who used a gold sphere and a silica plane sur-

rounded by liquid bromobenzene [29]. The sphere, intermediate liquid, and metal plate have low,

medium, and high permittivities. Thanks to the Casimir effect, larger polarizations are induced in

the fluid than the low-permittivity plate. The fluid is drawn to the high-permittivity plate with a

stronger force than the two plates are drawn to each other, causing a net repulsion.

Capasso and Munday’s experiment made use of the same techniques discussed above: can-

tilevered support for the gold sphere, angular measurements using reflected light from the cantilever,

and used the PFT approximation to predict the Casimir forces. They also needed to overcome some

additional challenges, however, such as the drag forces due to the bromobenzine liquid. Since the

drag forces are velocity-dependent, they were separated from the data by performing the experi-

ment at multiple speeds. Their results indicated repulsive forces on the order of 10 piconewtons

for separations of up to 40 nm.

7.5 Electrostatic Interactions

Measuring the Casimir effect is further complicated by the fact that electrostatic interactions also

affect the plate energy. Moreover, this interaction is frequently nonlinear in experimental setups,

especially if there is a uniform gradient to the work function for the cavity boundaries. The net effect

is a “spurious” force between the objects comprising the boundary, which Lamoreaux identified in

his research in fall of 2008 [30].

Experimenters typically work with conductive plates and spheres, and then adjust the applied

voltage to their surfaces. That voltage is typically minimized for a single intermediate value before

readings are taken, and then held constant. However, Lamoreaux found that the applied voltage

necessary to minimize the electrostatic force in his sphere/plate experiment was actually distance-

dependent!

Va(d) = a log d+ b (7.2)
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In which a and b are on the order of a few mV, and d is the inter-plate distance. This potential

arises from the assumption that the voltage on the surface a distance R from a plate varies as rn for

n� 1. This gives rise to a 1/d5/4 potential for the minimized force—a theoretical model matched

by his experimental findings of a potential running as 1/d1.2–1.4.

It is not necessary to understand the dynamics behind this potential to correct for its effects.

Lamoreaux suggested measuring the applied potential at large separations to set initial conditions,

and solving the electrostatic interaction numerically. Correcting for contact potential effects is one

more factor that Casimir force measurements must take into account.

8 Conclusion

We have reviewed how the Casimir energy arises from the quantization of the electromagnetic

field, and derived the energy of interaction from some simple boundary conditions. Zeta-functional

regularization proved an elegant, if unnerving, way to handle the infinities associated with quantum

field theory. From Casimir and Polder’s first suggestion of interatomic dielectric attraction to

micromechanical interactions, the vacuum energy appears in a variety of contexts—and even at high

temperatures and for macroscopic systems, may be experimentally confirmed. Ongoing research

will begin to probe the accuracy of our models of vacuum energy, through Lifshitz’s equations, for

even finer effects such as variable dielectric behavior. No matter what we find, the Casimir effect

will remain an unintuitive and fascinating consequence of quantum electrodynamics.
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[20] K. A. Milton. The Casimir Effect: Physical Manifestations of Zero-Point Energy. World

Scientific, 2001.

A general overview of the Casimir effect, oriented towards a wider audience.

[21] Roger Balian and Bertrand Duplantier. Geometry of the Casimir Effect. arXiv, 2004, quant-

ph/0408124.

An excellent overview of several Casimir geometry problems, and discussions of the

influence of curvature.

[22] Cyriaque Genet, Astrid Lambrecht, and Serge Reynaud. Temperature dependence of the

casimir effect between metallic mirrors. Phys. Rev. A, 62(1):012110, Jun 2000.

A numerical evaluation of the temperature-related corrections to the Casimir force,

including consideration of finite conductivity.

[23] M.J. Sparnaay. Measurements of attractive forces between flat plates. Physica, 24(6-10):751 –

764, 1958.

30



The first measurement of the Casimir effect between two plates, unfortunately in-

conclusive.

[24] S. K. Lamoreaux. Demonstration of the casimir force in the 0.6 to 6µm range. Phys. Rev.

Lett., 78(1):5–8, Jan 1997.

The first successful measurement of the Casimir force, using a ball/plate torsion

assembly.

[25] E. S. Sabisky and C. H. Anderson. Verification of the lifshitz theory of the van der waals

potential using liquid-helium films. Phys. Rev. A, 7(2):790–806, Feb 1973.

The first experimental confirmation of the Lifshitz model for dielectrics, using thin

films of liquid helium. As such, it also verifies the physical reality of vacuum energy,

although not the Casimir force, per se.
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