When I designed UState, I had a goal of a thousand state transitions per second. I hit about six hundred on my Macbook Pro, and skirted 1000/s on real hardware. Eventmachine is good, but I started to bump up against concurrency limits in MRI’s interpreter lock, my ability to generate and exchange SQL with SQLite, and protobuf parse times. So I set out to write a faster server. I chose Clojure for its expressiveness and powerful model of concurrent state–and more importantly, the JVM, which gets me Netty, a mature virtual machine with a decent thread model, and a wealth of fast libraries for parsing, state, and statistics. That project is called Riemann.

Today, I’m pleased to announce that Riemann crossed the 10,000 event/second mark in production. In fact it’s skirting 11k in my stress tests. (That final drop in throughput is an artifact of the graph system showing partially-complete data.)

throughput.png

Continue reading (285 words)

Microsoft released this little gem today, fixing a bug which allowed remote code execution on all Windows Vista, 6, and Server 2008 versions.

...allow remote code execution if an attacker sends a continuous flow of specially crafted UDP packets to a closed port on a target system.

Meanwhile, in an aging supervillain’s cavernous lair…

Continue reading (63 words)

Major thanks to John Muellerleile (@jrecursive) for his help in crafting this.

Actually, don’t expose pretty much any database directly to untrusted connections. You’re begging for denial-of-service issues; even if the operations are semantically valid, they’re running on a physical substrate with real limits.

Riak, for instance, exposes mapreduce over its HTTP API. Mapreduce is code; code which can have side effects; code which is executed on your cluster. This is an attacker’s dream.

Continue reading (619 words)

As a part of the exciting series of events (long story…) around our riak cluster this week, we switched over to riak-pipe mapreduce. Usually, when a node is down mapreduce times shoot through the roof, which causes slow behavior and even timeouts on the API. Riak-pipe changes that: our API latency for mapreduce-heavy requests like feeds and comments fell from 3-7 seconds to a stable 600ms. Still high, but at least tolerable.

mapred.png

[Update] I should also mention that riak-pipe MR throws about a thousand apparently random, recoverable errors per day. Things like map_reduce_error with no explanation in the logs, or {“lineno”:466,“message”:“SyntaxError: syntax error”,“source”:“()”} when the source is definitely not “()”. Still haven’t figured out why, but it seems vaguely node-dependent.

Continue reading (121 words)

One of the hard-won lessons of the last few weeks has been that inexplicable periodic latency jumps in network services should be met with an investigation into named.

dns_latency.png

API latency has been wonky the last couple weeks; for a few hours it will rise to roughly 5 to 10x normal, then drop again. Nothing in syslog, no connection table issues, ip stats didn’t reveal any TCP/IP layer difficulties, network was solid, no CPU, memory, or disk contention, no obviously correlated load on other hosts. Turns out it was Bind getting overwhelmed (we have, er, nontrivial DNS demands) and causing local domain resolution to slow down. For now I’m just pushing everything out in /etc/hosts, but will probably drop a local bind9 on every host as a cache.

Continue reading (141 words)